Home | Autentificare     
Experior Logo

Structuri algebrice pregrupale


Autor: Ion Otarasanu
Descriere: articol pentru Clasa a XII-a publicat in data de 27 Apr 2009, nivel de dificultate Dificultate.
Conceptul de structura algebrica—scurt istoric. Operatii algebrice: definitie si exemple. Conceptele de grupoid, subgrupoid, parte stabila, monoid, semigrup, quasigrup, bucla(loop) cu exemple. Morfisme si izomorfisme. Aplicatii diverse.
Domenii: Grupuri

Structuri algebrice pregrupale

În matematica de liceu, prin structură algebrică se înţelege dubletul (sau tripletul) format dintr-o mulţime nevidă şi o lege (sau două legi) de compoziţie, definite pe această mulţime, care verifică un set de proprietăţi numite axiomele structurii respective.

Noţiunea de lege de compoziţie s-a degajat odată cu apariţia grupurilor de substituţii ale lui E. Galois şi a fost cea care a permis lărgirea domeniului de cercetare al algebrei. În acest sens menţionăm algebra Boole, cuaternionii reali descoperiţi de Hamilton şi care au furnizat primul exemplu de corp necomutativ, vectorii, sistemele hipercomplexe şi, mai ales, matricele, descoperite de Cayley, toate acestea făcând ca preocupările algebriştilor să se orienteze, din ce în ce mai mult, către ceea ce se numeşte astăzi structura algebrică abstractă.

D.1. Se numeşte "lege de compoziţie" (sau operaţie algebrică internă) pe mulţimea nevidă Math formula, orice funcţie Math formula

În acest caz, elementul unic determinant Math formula, care este imaginea perechii ordonate Math formula Math formula, se notează Math formula şi se numeşte compusul lui Math formula cu Math formula prin legea de compoziţie Math formula.

Adesea, în locul lui Math formula se folosesc alte semne, de exemplu: Math formulacel mai des Math formula (notaţia aditivă) sau Math formula(notaţia multiplicativă), situaţii în care operaţiile se numesc adunare şi respectiv înmulţire, iar compusele Math formula şi Math formula suma şi respectiv produsul lui Math formula cu Math formula.

Pentru consideraţiile ce le vom face în continuare, vom nota operaţia algebrică cu Math formula şi vom scrie:

Math formula .

Din multitudinea exemplelor de legi de compoziţie prezentăm:

1. Adunarea şi înmulţirea numerelor întregi:

Math formula

Math formula Math formula

2. Adunarea şi înmulţirea matricelor pătratice de ordinul Math formula (Math formula) cu elemente numere reale:

Math formula Math formula ; Math formula Math formula

Math formula Math formula ; Math formula Math formula

3. Reuniunea şi intersecţia mulţimilor sunt legi de compoziţie pe mulţimea părţilor Math formulaale mulţimii nevide Math formula:

Math formula Math formula Math formula

Math formula Math formula

4. Dacă Math formula este o mulţime nevidă, iar Math formulaeste mulţimea funcţiilor definite pe Math formula cu valori în Math formula, atunci compunerea funcţiilor este o lege de compoziţie pe mulţimea Math formula:

Math formula .


Pagina 1 din 15 « Pagina anterioara        Pagina urmatoare »

Materiale Didactice Asemanatoare


Bullet Doua probleme de grupuri